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Abstract—Reliable packet delivery within stringent delay
constraints is of paramount importance to mission-critical
computer applications with hard real-time constraints.
Because retransmission and coding techniques counteract
the delay requirements, reliability may be achieved through
replication over multiple fail-independent paths. The exist-
ing solutions, such as the parallel redundancy protocol
(PRP), replicate all packets at the media access control
layer over parallel paths. PRP works best in local area net-
works; however, it is not viable for IP networks that are a key
element of emerging mission-critical systems. This limita-
tion, coupled with diagnostic inability and lack of security,
renders PRP unsuitable for reliable data delivery in these
IP networks. To address this issue, we present a transport-
layer solution: the IP parallel redundancy protocol (iPRP).
Designing iPRP poses nontrivial challenges in the form
of selective packet-replication, and soft-state and multi-
cast support. iPRP replicates only time-critical unicast or
multicast user datagram protocol traffic. iPRP requires no
modifications to the existing monitoring application, end-
device operating system, or to the intermediate network
devices. It only requires a simple software installation on
the end devices. iPRP has a set of diagnostic tools for net-
work debugging. With our implementation of iPRP in Linux,
we show that iPRP supports multiple flows with minimal
processing-and-delay overhead. It is being installed in our
campus smart-grid network and is publicly available.

Index Terms—Availability, industrial communication,
IP networks, redundancy, telecommunication network
reliability, wide area networks.

I. INTRODUCTION

S PECIFIC mission-critical computer applications have
hard delay constraints. Failure to satisfy these con-

straints can result in economic losses or, even worse, human
lives can be endangered in cases when these failures affect
safety mechanisms. Notable examples of such applications
(often built on top of cyber-physical systems) are process-
control and emergency-management applications in the oil
and gas industries [1], real-time detection of pollutants in the
water/wastewater industry [2], vehicle-collision avoidance in
car industry [3], automatic train control [4], process control
in chemical industry [5], state estimation in smart grid [6],
high-frequency trading [7], and distributed online gaming [8].
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Reliable and timely packet delivery, even in the order of
10 ms, is of utmost importance in satisfying the hard-delay
constraints. The classic approaches to reliable communication
through coding and retransmission are not compatible with
the hard delay constraints. An alternative is to achieve relia-
bility through replication over multiple fail-independent paths,
which is the focus of this paper. More precisely, we present a
solution for packet replication over multiple paths in IP net-
works. Indeed, as we discuss next, the existing solutions apply
to media access control (MAC)-layer networks and cannot be
transposed to IP networks that are a requirement for many of
the aforementioned applications.

A. From MAC- to IP-Layer Parallel Redundancy Protocol

The parallel redundancy protocol (PRP) IEC standard [9]
was proposed as a solution to packet replication over multiple
fail-independent paths for local area networks (LANs) where
there are no routers. Communicating devices need to be con-
nected to two cloned (disjoint) bridged networks. The sender
tags MAC frames with a sequence number and replicates them
over its two interfaces. The receiver discards redundant frames
based on sequence numbers.

In addition to extending PRP functionality to IP networks,
the new design should also avoid the drawbacks of PRP. The
most limiting feature of PRP is that the two cloned networks
need to be composed of devices with identical MAC addresses.
This contributes to making network management difficult.
Furthermore, PRP duplicates all the traffic unselectively, which
is acceptable for use in a local environment, but which can-
not be done in general IP networks, because some links can be
expensive and unnecessary traffic should be avoided. Moreover,
PRP has no security mechanisms.

Note that, a PRP for IP networks needs to support IP multi-
cast, as this is used in many of the aforementioned applications.

For a running example, we use the smart-grid communi-
cation network depicted in Fig. 1. Here, measurements are
streamed periodically (every 20 ms for 50-Hz systems) by pha-
sor measurement units (PMUs) to phasor data concentrators
(PDCs), where the information about the electrical network
state is expected in quasi-real time. PRP cannot be directly
deployed here: devices are multihomed and each interface
is assigned a different IP address. Most devices have two
interfaces connected to a main network cloud made of two
fail-independent network subclouds labeled A and B, while
some have a third interface connected to a 4G cellular wire-
less service (labeled “Swisscom Long-term evolution (LTE)
backbone” in this figure). It is assumed that paths between
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Fig. 1. Typical iPRP use-case in the context of smart grids. Devices
PDCs and PMUs are connected to two overlapping network subclouds
(labeled A and B). Some devices use an additional LTE connection pro-
viding a low-latency cellular service [10]. Every PMU streams data to all
PDCs, using UDP and IP multicast.

interfaces connected to the A network subcloud stay within it
(and similarly with B). The A and B network subclouds could be
physically separated; however, in practice, they are most likely
interconnected for network management reasons.

A simple way to achieve the arrangement described before
is to divide the network into two logical subclouds A and B.
Then, by adjusting the routing weights of the links intercon-
necting the A and B subclouds, we can ensure that A→ A and
B → B traffic stays within A and B subclouds, respectively,
thereby giving rise to fail-independent paths. In such a setting,
the interconnections will be used only for A↔ B traffic.

We need a solution that, similarly to PRP, takes advantage
of network redundancy for increasing reliability and works in
scenarios such as the one in Fig. 1. The existence of fail-
independent paths is fundamental for the optimal operation of
such a solution. However, in the event of a network-component
failure, the paths can partially overlap. Then, the solution
should reap the maximum possible benefits by operating in a
degraded-redundancy mode. In other words, if complete end-
to-end redundancy is no longer possible, the solution should
continue to work.

In order for our solution to be easily deployed, we also
require it to be transparent to both the application and network
layers: it should only require installation at end devices and no
modifications to running application software or to intermedi-
ary network devices (routers or bridges). In addition, real-time
applications typically use user datagram protocol (UDP) rather
than transmission control protocol (TCP) because TCP does not
work with IP multicast or TCP retransmissions, the following
packet losses, require several round-trip times and can be both
detrimental and superfluous. Hence, we target a solution that
supports UDP applications only.

In this paper, we present the design and implementation of
iPRP (the IP PRP), a transport layer solution for transparent
replication of unidirectional unicast or multicast UDP flows on
multihomed devices.

B. iPRP

An iPRP host has to send different copies of the same packet
over different paths. With the current technology, a device
cannot control the path taken by an IP packet, beyond the

choice of a destination address, exit interface and a type-of-
service value. Other fields, such as the IPv6 flow label or source
routing header extensions, are either ignored or rejected by
routers. Also, the type-of-service field is used by applications
and should not be tampered with by iPRP. Hence, we assume
that a choice of the path is done at the sources by choosing com-
munication interface and the destination address. The job of
iPRP is then to transparently replicate packets over the different
interfaces for the UDP flows that need it, match corresponding
interfaces, remove duplicates at the receiver, and do this in a
way that is resilient to crashes (see Section V-G).

Not all traffic requires replication, only certain devices and
certain UDP flows do (time-critical data). Hence, replication
needs to be selective: a failure-proof mechanism, transparent
to applications, is required for detecting and managing packet
replication. It needs to correctly match the interfaces, so that
independent paths are used whenever they exist.

The iPRP protocol design is such that it does not interfere
with the existing security mechanisms and does not introduce
any new security weaknesses (see Section VI).

iPRP assumes that the network is traffic engineered; the crit-
ical UDP data streams receive enough resources and are not
subject to congestion. iPRP instantly repairs packet losses due
to failures or transient problems, such as transmission losses. It
does not solve congestion problems due to underdimensioned
network links. TCP flows are not affected.

Our iPRP implementation is for IPv6, as it is being installed
in our smart-grid communication network (smartgrid.epfl.ch),
that uses IPv6 (following the argument that new network
environments should avoid future transition problems and
embrace IPv6 from the start). Our implementation is available
at http://goo.gl/N5wFNt. Adaptation to IPv4 is straightforward.

II. RELATED WORK

As mentioned in Section I, iPRP overcomes the limitations
of PRP [9]. The authors of [11] are aware of the fact that
PRP is limited to LANs and suggest a direction for develop-
ing PRP in an IP environment. Their suggestion is neither fully
designed nor implemented. Also, it requires that the intermedi-
ate routers preserve the PRP trailers at the MAC layer, which
in turn requires changes in all of the routers in the networks.
It does not address all the shortcomings of PRP (diagnostic
tools, lack of multicast support, and need of special hardware).
In contrast, our transport layer approach does not have these
drawbacks.

Multipath TCP (MPTCP) [12] is used in multihomed hosts. It
allows TCP flows to exploit the host’s multiple interfaces, thus
increasing the available bandwidth for the application. Like
MPTCP, iPRP is a transport layer solution and is transparent
to network and application. Unlike MPTCP, iPRP replicates the
UDP packets on the parallel paths, while MPTCP sends one
TCP segment on only one of them. In a case of loss, MPTCP
resends the segment on the same path until enough evidence is
gathered that this path is broken. So, a lost packet is repaired
after several round-trip time (RTTs) (not good for time-critical
flows).

Similarly, link aggregation control protocol (LACP) [13] and
equal-cost multipath routing (ECMP) [14] require seconds for
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failover. LACP enables the bundling of several physical links
together to form a single logical channel. The failure of a link is
discovered through the absence of keep-alive messages that are
sent every 1–30 s. ECMP can be used together with most rout-
ing protocols in order to balance traffic over multiple best paths
when there is a tie. In a case of failure, it relies on the recon-
figuration of the underlying routing protocol that is commonly
detected by the absence of keep-alive messages.

Network coding exploits network redundancy for increas-
ing throughput [15], and requires intermediary nodes to recode
packets (specialized network equipment needed). Also, it is not
suitable for time-critical applications as typically packets are
coded across “generations,” which introduce decoding delays.
Source coding (e.g., fountain codes [16]) can be useful for the
bursty transmissions of several packets. However, it adds delay,
as encoding and decoding are performed across several packets
(not suitable for UDP flows with hard-delay constraints).

Multiprotocol-label-switching transport-profile (MPLS-TP)
1 + 1 protection feature [17] performs packet duplication and
feeds identical copies of the packets in working and protec-
tion path. On the receiver side, there exists a selector between
the two; it performs a switchover based on some predeter-
mined criteria. However, some time is needed for fault detection
and signaling to take place, after which the switchover occurs.
Hence, a 0-ms repair cannot be achieved.

Multitopology routing extends the existing routing proto-
cols (e.g., [18]) and can be used to create disjoint paths in
a single network. It does not solve the problem of trans-
parent packet replication, but can serve as a complement to
iPRP in the following way. On top of the underlying network
(base topology), additional class-specific topologies can be cre-
ated as a subset of base topology. We can use this feature to
define fail-independent A and B subclouds in order to ensure
fail-independent paths between sources and destinations.

Another method to ensure the discovery of fail-independent
paths is software-defined networking (SDN) [19]. Centralized
controller is aware of the overall network topology and can
impose routing rules in a way that guarantees independent
paths/trees between all the hosts.

III. A TOP-DOWN VIEW OF IPRP

In this section, we first go over high-level design decisions
we had to make during the development of the iPRP proto-
col and then succinctly describe the resulting design. iPRP
aims to provide reliable end-to-end communication between
multihomed hosts. The very first question that emerges is the
choice of a TCP/IP layer where iPRP should be placed. Among
others, iPRP needs to support scenarios where the traffic is
carried over a shared network infrastructure, e.g., a telecom
network operator provides connectivity for smart-grid services
[20]. In this case, end users do not control intermediate routers.
Hence, the routers should not be aware of the existence of iPRP.
Consequently, we put network transparency as a requirement,
which leads us to a solution that places iPRP above the net-
work layer. Taking this into account, a possible solution can be
to place iPRP at the application layer. This would imply that
all legacy applications that are traditionally used would need to
undergo changes in order to be compatible with iPRP protocol.

Again, we opt for an application-transparent solution that leads
us to a choice of a transport-layer solution.

The next choice to make was whether all the traffic originated
at a sender should be replicated. Having in mind that bandwidth
over IP-network links can be of limited capacity we opt here
for a solution that replicates traffic selectively. The control of
this feature is left to users through a simple configuration of
the UDP port numbers that correspond to services that demand
high reliability of packet delivery.

The next choice was that of a mechanism to inform a sender
about the alternate IP addresses (unicast or multicast) of the
receivers, so as to establish redundant paths. Classic solutions
like PRP, use cloned address networks. Cloned IP addresses are
not an option of iPRP as users do not necessarily control and
manage all the interconnecting networks.We solve this problem
by designing lightweight, secure, and crash-resilient signaling
protocol. It also takes into account specificities of the multicast
communication, e.g., it avoids flooding of senders with signal-
ing messages from large groups of multicast receivers. It is a
plug and play protocol initiated whenever a new sender emerges
and completely transparent to the application layer.

Furthermore, we needed a mechanism for discard of dupli-
cates, which can cope with packet reordering due to the
network, and crash failures of the hosts. The existing duplicate-
discard mechanisms such as the one used by PRP do not
perform well under such packet-reordering and host failures.
So, we also put in place, a stateless protocol for redundant
packets removal.

The resulting design of iPRP is as follows. iPRP senders
and receivers are expected to have multiple network interfaces.
Applications are identified by the UDP port used to receive
data. To enable iPRP for a certain application at the receiver,
the port on which the application is listening needs to be
added to the list of iPRP monitored ports (see Section IV-C).
Receiving data on an iPRP monitored port automatically trig-
gers an iPRP session between the sender and the receiver (see
Section V). Within this session, the iPRP software running on
the source host learns the receiver’s network interfaces from
the iPRP software running on the receiver. It uses the config-
ured rules to match local interfaces to the receiver’s remote
ones. It then proceeds to capture the application’s outgoing
packets, encapsulates them in iPRP data messages addressed to
the receiver’s remote interfaces (according to the determined
matching), and replicates them over the local interfaces. At
the receiver, the iPRP software decapsulates the original pack-
ets, discards duplicates (Section V-E), and delivers them to the
receiver application.

Hosts having multiple interfaces is not a strict requirement,
but is desirable. In cases where the sender or the receiver have a
single interface, iPRP still works, but the paths taken by the
replicated packets join at a certain point, which becomes a
single point of failure.

IV. OPERATION OF IPRP

A. How to Use iPRP

iPRP is installed on end devices with multiple interfaces
on: streaming devices (the ones that generate UDP flows with
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hard-delay constraints) and receiving devices (the destinations
for such flows).

Streaming devices (such as PMUs) do not require special
configuration. Streaming applications running on such devices
benefit from the increased reliability of iPRP without being
aware of its existence. iPRP operates as a modification to the
UDP layer.

On receiving devices, the only thing that needs to be config-
ured is the set of UDP ports on which replication is required.
For example, say that an application running on a PDC is lis-
tening on some UDP port for measurement data coming from
PMUs. After iPRP is installed, this port needs to be added to
the list of iPRP monitored ports in order to inform iPRP that
any incoming flows targeting this port require replication. The
application does not need to be stopped and is not aware of
iPRP.

Nothing else needs to be done for iPRP to work. In particular,
no special configuration is required for intermediary network
equipment (routers and bridges).

B. General Operation: Requirements for Devices and
Network

iPRP provides 1 + n redundancy. It increases, by packet
replication, the reliability of UDP flows. It does not impact TCP
flows.

iPRP-enabled receiving devices configure a set of UDP ports
as monitored. When a UDP packet is received on any of the
monitored ports, a one-way soft-state iPRP session is triggered
between the sender and the receiver (or group of receivers, if
multicast is used). Soft-state means that the state of the com-
munication participants is refreshed periodically, and the entire
iPRP design is such that a state-refresh message received after a
cold start is sufficient to ensure proper operation. Consequently,
the state is automatically restored after a crash, and devices
can join or leave an iPRP session without impacting the other
participants.

Within an iPRP session, each replicated packet is tagged with
an iPRP header (Section V-D). It contains the same sequence
number in all the copies of the same original packet. At the
receiver, duplicate packets with the same sequence number are
discarded (Section V-E). The original packet is reconstructed
from the first received copy and forwarded to the application.

In multicast, all devices in the group of receivers need to run
iPRP. If by mishap only part of the receivers support iPRP, these
trigger the start of an iPRP session with the sender and benefit
from iPRP; however, the others stop receiving data correctly.
The use of source-specific multicast (SSM) is recommended
(see [21]).

All iPRP-related information is encrypted and authenticated.
The existing mechanisms for cryptographic key exchange are
applied (security considerations in Section VI).

C. UDP Ports Affected by iPRP

iPRP requires two system UDP ports (transport layer) for its
use: 1) the iPRP control port; and 2) the iPRP data port (in our
implementation 1000 and 1001, respectively). The iPRP control

port is used for exchanging messages that are part of the soft-
state maintenance. The iPRP data port receives data messages
of the established iPRP sessions. iPRP-capable devices always
listen for iPRP control and data messages.

The set of monitored UDP ports, over which iPRP replica-
tion is desired are not reserved by iPRP and can be any UDP
ports. UDP ports can be added to/removed at any time from
this set during the iPRP operation. Reception of a UDP packet
on a monitored port triggers the receiver to initiate an iPRP ses-
sion. If the sender is iPRP capable, an iPRP session is started
(replicated packets are sent to the iPRP data port), else regular
communication continues.

D. Matching the Interconnected Interfaces of Different
Devices

One of the design challenges of iPRP is determining an
appropriate matching between the interfaces of senders and
receivers, so that replication can occur over fail-independent
paths. To understand the problem, consider Fig. 1 where the
PMUs and PDCs have at least two interfaces. The A and B
network subclouds are interconnected. However, the routing is
designed such that, a flow originating at an interface connected
to subcloud A with a destination in A, will stay in subcloud A.
A potential problem can arise if a sender’s interface, say SA,
intended to be connected to the A subcloud, is mistakenly con-
nected to the B subcloud, and vice versa. Then, one path from
source to destination will go from SA (on subcloud B) to the
destination interface DB (on subcloud B), and conversely to
the other path. Following the routing rules, these flows will use
interconnecting links between A and B subclouds. This is not
desirable as these links can be of insufficient capacity because
they are not intended to carry such traffic. Furthermore, it is no
longer guaranteed that such paths are disjoint. PRP avoids this
problem by requiring two physically separated and cloned net-
works. iPRP does not impose these restrictions. Hence, iPRP
needs a mechanism to match interfaces connected to the same
network subcloud.

To facilitate appropriate matching, each interface is asso-
ciated with a 4-bit identifier called iPRP network subcloud
discriminator (IND), which qualifies the network subcloud it
is connected to. The iPRP software in end devices learns each
of the interfaces’ INDs automatically via simple preconfigured
rules. Network routers have no notion of IND. A rule can use
the interface’s IP address or its DNS name. In our implementa-
tion, we compute each interface IND based on its fully qualified
domain name. In Fig. 1, the rule in the iPRP configuration maps
the regular expression nw-a∗ to the IND value 0xa, nw-b∗ to
IND 0xb, and ∗swisscom.ch to IND 0xf, respectively.

The receiver periodically advertises the IP addresses of its
interfaces, along with their INDs to the sender (via iPRP_CAP
messages). The sender compares the received INDs with its
own interface INDs. Only those interfaces with matching INDs
are allowed to communicate in iPRP mode. In our example,
IND matching prevents iPRP to send data from a PMU A inter-
face to a PDC B interface. Moreover, each iPRP data packet
contains the IND of the network subcloud where the packet is
supposed to transit (see Section V-D). This eases the monitoring
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Algorithm 1. (At the receiver) Soft-state maintenance (keeps
the list of active senders up-to-date)

1 while true do
2 remove inactive hosts from the list of active senders

(last-seen timer expired);
3 for every packet received on one of the monitored ports

or on iPRP Data Port do
4 if the source is in the list of the active senders

then
5 update associated last-seen timer;
6 else
7 put sender in the list of active senders;
8 end
9 end

10 end

and debugging of the whole network. It allows us to detect
misconfiguration errors that cause a packet expected on an A
interface to arrive on a B interface.

V. PROTOCOL DESCRIPTION

The iPRP message exchange is divided into two planes:
1) control; and 2) data planes. The control plane is responsible
for exchange of messages required to establish and maintain
an iPRP session. The data plane is responsible for replication
and deduplication of time-critical UDP flows. Note that, con-
trol plane messaging is nontime critical and far less frequent
than data plane (data plane—ms and control plane—s) .

The data plane operation is divided into two phases: 1) repli-
cation phase; and 2) duplicate-discard phase. Next, we discuss
the operation of each plane and the description of key elements
of the iPRP protocol in detail.

A. Control Plane

The control plane is used for exchange of messages to
establish and maintain an iPRP session. The iPRP session estab-
lishment is triggered when a UDP packet is received at some
monitored UDP port p. In Fig. 2, UDP port p is made monitored
at t1 at the receiver, by adding it to the list of monitored ports.
This triggers the establishment of an iPRP session, i.e., the
receiver’s soft-state-maintenance functional block (Fig. 3) adds
the sender to the list of active senders (Algorithm 1).

The iPRP-capability-advertisement functional block (Fig. 3)
at the receiver, sends iPRP_CAP to the control port of the
sender every TCAP seconds (t2 in Fig. 2, Algorithm 2). This
message informs the sender that the receiver is iPRP enabled
and provides information required for selective replication over
alternative paths. It contains the iPRP version; INDs of the net-
work subclouds to which the receiver is connected to facilitate
IND matching (see Section IV-D); the source and destination
UDP port numbers of the packet that triggered the iPRP-session
establishment; in multicast, the multicast IP address of the
group; in unicast, IP addresses of all receiver interfaces; and

Fig. 2. Message sequence chart for typical scenario when iPRP-
capable devices are starting iPRP operation.

Fig. 3. Overview of the functional blocks.

a symmetric, short-lived cryptographic key for authentication
and encryption of the iPRP header (Section VI).

On receiving the iPRP_CAP, the iPRP-session-maintenance
functional block (Fig. 3) at the sender acknowledges it with
an iPRP_ACK. The iPRP_ACK contains the list of sender IP
addresses that are used by the receiver to subscribe to alternate
network subclouds to receive data through SSM. In multi-
cast, the receivers send iPRP_CAP after a back-off period
(Section V-F) to avoid flooding. The iPRP_ACK message also
serves as a terminating message for impending iPRP_CAPs,
thereby preventing a flood (Algorithm 2).
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Algorithm 2. (At the receiver) iPRP capability advertisement

1 while true do
2 compute Tbackoff (Section V-F);
3 listen for iPRP_ACKs until Tbackoff expires;
4 send iPRP_CAP messages to all hosts in the list of active

senders from which no iPRP_ACKs are received;
5 sleep TCAP − Tbackoff ;
6 end

Algorithm 3. (At the sender) iPRP session maintenance

1 while true do
2 remove aged entries from the peer-base;
3 for every received iPRP_CAP message do
4 if there is no iPRP session established with the

destination then
5 if IND matching is successful then
6 establish iPRP session by creating new entry

in the peer-base;
7 send iPRP_ACK message;
8 end
9 else

10 update the keep-alive timer;
11 end
12 end
13 end

To complete the iPRP session establishment, the iPRP-
session-maintenance functional block performs IND matching
(Section IV-D) and creates a peer-base entry (t3 in Fig. 2,
Algorithm 3). The peer-base contains all information needed
by the sender for replication of data packets.

The second goal of control plane it to maintain an iPRP ses-
sion. To this end, the iPRP_CAP messages are used as keep-alive
messages (Algorithm 3). The iPRP session is terminated if no
iPRP_CAP message is received for a period of 3TCAP. These
messages are sent to a sender as long as it is present in the
list of active senders. The list of active senders is maintained
by the soft-state-maintenance functional block by updating
the last-seen timer (Algorithm 1) when a new data packet is
received. Sessions that are inactive for more than Tinactivity are
terminated.

For each new iPRP session, a corresponding iPRP session
establishment is triggered. If any of the required steps could not
be completed due to message loss or to an iPRP incapability, an
iPRP session is not established and packets are not replicated.

Addition or removal of new interfaces at the sender or
receiver is communicated by the iPRP_CAP messages and
the peer base is updated accordingly. Specifically, when an
iPRP_CAP is received for already established iPRP sessions,
the peer base is updated in the following ways. Newly received
INDs, which are successfully matched, are added to the peer
base. On the contrary, INDs in the peer base that cannot be
matched with any of the received INDs, are removed from
the peer base after confirmation from multiple consecutive
iPRP_CAPs (to handle the effect of the backoff algorithm in
Section V-F).

Algorithm 4. (At the sender) Packet replication

1 for every outgoing packet do
2 check the peer-base;
3 if there exists an iPRP session that corresponds to the

destination socket then
4 replicate the payload;
5 append iPRP headers incl. seq. number;
6 send packet copies;
7 else
8 forward the packet unchanged;
9 end

10 end

B. Data Plane: Replication Phase

The replication phase occurs at the sender to send out
data plane messages once the iPRP session is established.
The replication functional block (Fig. 3) on the sender inter-
cepts all outgoing packets destined to UDP port p of the
receiver. These packets are subsequently replicated and iPRP
headers (Section V-D) are prepended to each copy of the pay-
load. iPRP headers are populated with the iPRP version, a
sequence-number-space ID (SNSID—unique identifier of an
iPRP session), a sequence number, an original UDP destina-
tion port, and IND. The 32-bit sequence number is the same for
all the copies of the same packet. The destination port number
is set to the iPRP data port for all the copies. An authentication
hash is appended and the whole block is encrypted. Finally, the
copies are transmitted as iPRP data messages over the different
matched interfaces (see Algorithm 4, t4 in Fig. 2).

C. Data Plane: Duplicate-Discard Phase

The duplicate-discard phase occurs at the receiver, once an
iPRP session is established to ensure that only one copy of repli-
cated packets is forwarded to the application. Upon reception of
packets on the iPRP data port, the associated last-seen timer is
updated (see Algorithm 1) and the packets are forwarded to the
duplicate-discard functional block (Algorithm 5). It decrypts
the iPRP header at the beginning of the payload using the
symmetric key used in iPRP_CAP message. Then, function
isFreshPacket (Section V-E - Algorithm 6) is called. Based
on the sequence-number-space ID (SNSID—unique identifier
of an iPRP session) and the sequence number, the packet
is either forwarded to the application or discarded. The first
received copy should reach the application, subsequent copies
are discarded. The replication is thus rendered transparent to the
sender and receiver applications. In Fig. 2, we show two scenar-
ios after the time t4; in one case, both copies are delivered, in
the other, one packet is lost.

D. iPRP Header

Fig. 4 shows the position and the fields of the iPRP header
used in data packets. The SNSID is used to identify an iPRP
session. This identifier is unique across all iPRP sessions ter-
minating at the same receiver, thereby allowing multiple iPRP
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Fig. 4. Location and fields of the iPRP header.

sessions on the same machine. In our implementation, it is cho-
sen as a concatenation of the source IPv6 address, the source
UDP port number of the socket to which the application writes
the packet and a 16-bit reboot counter.

The SNSID is used by a receiver to tie the packets with
different source IP addresses that belong to the same iPRP
session. When a new receiver joins a multicast group with an
already established iPRP session, it uses the source IP address
in the SNSID to uniquely identify the sender of the packets and
the source port number in the SNSID to uniquely identify the
streaming application on the sender. However, in case of a crash
and reboot of the sender, the sequence number is reset. Then, a
new reboot counter in the iPRP header differentiates packets
belonging to the new iPRP session from those of the old iPRP
session, thereby ensuring a seamless recovery at the receiver.

To maintain the format of the iPRP header for an IPv4 imple-
mentation, we suggest repeating source IPv4 address four times
at the place of source IPv6 address. The original destination
UDP port number is included to allow for the reconstruction
of the original UDP header. The iPRP header is placed after
the inner-most UDP header. So, iPRP works well, even when
tunneling is used (e.g., 6–4).

Like many protocols (such as DTLS, VPN, VXLAN, and
4in6), iPRP adds its own header to the packet payload. In
order to avoid packet fragmentation, we adopt the same solu-
tion as any tunneling protocol: at the sender, iPRP reduces the
interface MTU size to the minimum of 1280 bytes required
by IPv6. In practice, typical MTU values are closer to the
IPv6-recommended 1500 bytes. This leaves a margin for the
inclusion of the iPRP and other tunneling protocol headers.

E. Discard Algorithm

The redundant copies of a packet are eliminated by a dis-
card algorithm running at the receiver. In scenarios where the
packets are received out-of-order, the discard algorithm pro-
posed for PRP [22] delivers several copies of the same packet
to the application. The function isFreshPacket (Algorithm 6)
avoids this issue. It is used by Algorithm 5 to decide if a packet
sequence number corresponds to a fresh packet. We use 32-bit
unsigned integer sequence numbers, large enough to avoid the
wrap-around problem.

Algorithm 6 tracks the following variables per iPRP session,
identified by a sequence number space ID (SNSID):

1) HighSN—highest sequence number of a packet received
before the current packet;

2) ListSN—sequence-number list of delayed packets.

ListSN is bounded to a maximum of MaxLost < 231

entries. MaxLost is the maximum sequence-number differ-
ence accepted by the application. In practice, we can take
MaxLost > R× Tlate, where R is an upper bound on packet

Algorithm 5. (At the receiver) Duplicate discard

1 for every packet received on iPRP data port do
2 get sequence number space ID (SNSID);
3 get sequence number (SN);
4 if it is the first packet from this SNSID then
5 SNSID.HighSN← SN // Bootstrap
6 remove iPRP header;
7 reconstruct original packet;
8 forward to application;
9 else

10 if isFreshPacket(SN, SNSID) then
11 remove iPRP header;
12 reconstruct original packet;
13 forward to application;
14 else
15 silently discard the packet;
16 end
17 end
18 end

Algorithm 6. Function to determine whether a packet with
sequence number CurrSN corresponds to a fresh packet in the
sequence number space ID SNSID. The test “x follows y” is per-
formed for 32-bit unsigned integers using subtraction without
borrowing as “(x− y) >> 31 == 0”.

1 function isFreshPacket(CurrSN, SNSID)
2 if CurrSN == SNSID.HighSN then
3 return false; // Duplicate packet
4 else if CurrSN follows SNSID.HighSN then
5 put SNs [SNSID.HighSN+1, CurrSN-1] in SNSID.

ListSN;
6 remove the smallest SNs until SNSID.ListSN has

MaxLost entries;
7 SNSID.HighSN← CurrSN // Fresh packet
8 returntrue;
9 else

10 if CurrSN is in SNSID.ListSN then
11 remove CurrSN from SNSID.ListSN;
12 return true; // Late packet
13 else
14 return false // Already seen or very late
15 end
16 end

rate of the streaming application that corresponds to an
iPRP session and Tlate is the time after which packets are
deemed out-of-date, thus irrelevant. Consequently, if a packet
is received with a sequence number that precedes HighSN by
more than MaxLost, it is deemed “very late” and dropped.

The value of MaxLost is configurable and depends on the tar-
geted application. For example, in our smart-grid setting, there
is a hard delay constraint of 20 ms (any packet older than this
can be safely discarded). To be conservative, we allow pack-
ets with the delays of up to Tlate = 50 ms. We set MaxLost to
1024, high enough to support any realistic PMU streaming rate.
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iPRP and its discard algorithm are able to recover after
unexpected events (crashes and reboots). A problem can occur
if, after a reboot of a sender, the same sequence numbers are
reused. Then, fresh packets can be wrongly discarded as the
receiver would be deceived into believing that it had already
delivered such packets. This problem can be fixed by impos-
ing handshakes between senders and receivers. However, such
a solution is not appropriate if multicast is used and, further-
more, it would violate soft-state property. Our solution is to
have a sender maintain a reboot counter that defines differ-
ent sequence-number spaces within the same sender machine
(see Section V-D). Therefore, when a new reboot counter is
encountered, the receiver creates a new SNSID, thereby reset-
ting HighSN. Following a reboot of a receiver, all the receiver’s
counters are initialized upon the reception of the first iPRP data
packet.

As mentioned earlier, the algorithm keeps track of one
variable and one list per iPRP session. The most expensive
operation is searching the list (line 10). However, in practice,
ListSN is limited to few entries. The algorithm can be fur-
ther optimized for a O(1) time complexity by using a hash
table implementation for ListSN. Additionally, the algorithm
is designed to have a fixed memory usage: size(ListSN) bytes.

Before stating the correctness of the algorithm, we need
to introduce some definitions. We say that a received packet
is valid if it arrives in order or if it is out-of-order but not
later than Tlate. Formally, this means that a packet received at
time t with SN = α is not valid if some packet with SN = β >
α+ MaxLost was received before t.

Furthermore, let Δ be an upper bound on the delay jitter
across all network subclouds. Formally, for any two packets
i, j sent over any two network subclouds k, l: Δ ≥ (

δki − δlj
)
,

where δ denotes the one-way network delay. Also, recall that
Tinactivity is used to terminate inactive sessions (Section V-A).

Theorem 1 (Correctness of the discard algorithm): If R×
Δ < 231 and R× (Tinactivity +Δ) < 231, then Algorithm 6
guarantees that: 1) no duplicates are forwarded to the applica-
tion; and 2) the first received valid copy of any original packet
is forwarded to the application.

The proof is lengthy and is given in the appendix. To under-
stand the practicality of the conditions in the theorem, note that,
Tinactivity is in the order of seconds and is much larger than
Δ. Therefore, the only condition to verify is R× (Tinactivity +
Δ) < 231, which for, say Tinactivity = 10 s and Δ = 100 ms,
requires R < 2× 108 packets/s (pps)—a rate much higher than
ever expected.

F. Backoff Algorithm

The soft state in a multicast iPRP session is maintained by
periodic advertisements (iPRP_CAP) sent to the source by each
member in the multicast group of receivers. We want to prevent
“message implosion” at the source for groups of receivers rang-
ing from several hosts to millions. Failing to do so can have a
similar effect as a denial-of-service attack. The source would be
overwhelmed with processing iPRP_CAPs if all the multicast
group members would send them. Nevertheless, if the source
waits too long before receiving at least one iPRP_CAP, the
start of the iPRP operation would be delayed. This is why, we

also require the source to receive an iPRP_CAP within at most
D = 10 s after the start of the loop in Algorithm 2 (executed
periodically every TCAP = 30 s) .

A similar problem was studied in the literature on reliable
multicast, where ACK implosion at the source needs to be
avoided. To the best of the authors’ knowledge, the solution
that best fits our scenario was proposed by Nonnenmacher
and Biersack [23]. We adopt it in our design: each receiver
performs a random backoff before transmitting an iPRP_CAP.
The source acknowledges each iPRP_CAP by an iPRP_ACK.
The reception of an iPRP_ACK before the expiry of the back-
off timer inhibits any receiver from sending its iPRP_CAP.
The backoff timer follows a flipped truncated exponential dis-
tribution (inaptly called “exponential” in [23]), defined by a
PDF on [0, D] that increases toward D, fX(x;λ,D)

def.
= λeλx

(eλD − 1)−1 · 1{x∈[0,D]}.
Due to the back-off algorithm, a multicast iPRP sender may

not receive iPRP_CAPs from the same receiver in two consec-
utive cycles. As different receivers can have interfaces with
different INDs’ active, the consecutive iPRP_CAPs seen by the
sender can have different INDs. In cases when an iPRP_CAP
is received from a receiver with fewer interfaces, if the miss-
ing INDs would be immediately removed from the sender’s
peer base, the replication on these network subclouds would be
adversely affected. To mitigate this problem, removal of INDs
from the peer base is done only after confirmation from multiple
consecutive iPRP_CAPs (see Section V-A).

We implement the backoff computation of [23] by CDF
inversion. A uniform random variable U ∈ [0, 1] is obtained
via a random number generator. Next, the backoff is set to
Tbackoff = λ−1 ln(1 + (eλD − 1)U) (Algorithm 2, line 2). We
pick λ = 25/D (see [21] for further discussion).

G. Robustness and Soft State

iPRP is a soft-state protocol that is robust against host fail-
ures and supports joining or leaving the hosts from the network
at any time, independently of each other. In a multicast case,
it is expected that a new iPRP-capable receiver can show up
(or simply crash and reboot) after an iPRP session with other
receivers was established. Then, the new receiver will immedi-
ately be able to process packets received at the iPRP data port
without the need to exchange control messages.

The iPRP control-message exchange does not rely on the
availability of any particular network subcloud, making our
protocol robust to network failures. Once the soft-state main-
tenance functional block learns about alternative network
subclouds, iPRP_CAP messages are sent over all of them.
Furthermore, the control plane communication to the reserved
iPRP control port is secured (see Section VI). The security algo-
rithm for iPRP header protection can be chosen as a part of the
configuration.

VI. SECURITY CONSIDERATIONS

The iPRP protocol design is such that it does not inter-
fere with upper-layer security protocols. However, in addition,
we needed to provide security for the iPRP header itself, as
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there are attacks that can stay undetected by upper-layer secu-
rity protocols. Concretely, if an attacker manages to alter the
sequence-number field of iPRP packets transmitted over one
(compromised) network subcloud, the discard algorithm can be
tricked in a way that the packets from both (compromised and
noncompromised) network subclouds are discarded. Note that,
similar attacks exist for PRP, where an attacker, with access to
one network, can force the discard of valid frames on another
network. For example, say an attacker has access to network
subcloud A. A PRP frame is represented as A5, where A is
the network subcloud it belongs to and 5 is the sequence num-
ber. If A5 and B5 were received and the attacker retransmits
the frame A5 by altering the sequence number as A6, then the
actual A6 and B6 frames will both be discarded. In other words,
an unsecured PRP or iPRP could weaken the network instead of
making it more robust. Yet another argument for protecting the
iPRP protocol is that by doing so, we minimize the exposure
for prospective attacks in the future.

The iPRP control messages are encrypted and authenticated.
This guarantees that the security of replicated UDP flows is
not compromised by iPRP and that it does not interfere with
application layer encryption/authentication.

Specifically, iPRP_CAP messages and the corresponding
iPRP_ACK messages are transmitted over a secure channel. The
iPRP header inserted in the data packets is authenticated and
encrypted with a preshared key. Thus, replay attacks and forged
messages insertion are avoided.

We establish the secure channel for the transmission of
iPRP_CAP messages depending on the type of communication,
unicast, or multicast. Details are as follows.

Unicast: In unicast mode, a datagram transport layer secu-
rity (DTLS) [24] session is maintained between the sender and
the receiver. It is initiated by the receiver upon the arrival of
the first UDP datagram from the source. iPRP_CAP messages
are transmitted within this session. So, the iPRP capabili-
ties of the receiver are transmitted only to an authenticated
source. iPRP_ACKs are not required in unicast (since message
implosion can occur in multicast only).

Unicast iPRP_CAP messages contain a symmetric key used to
authenticate and encrypt the iPRP header. This key is updated
periodically during a unicast iPRP session. Hosts keep a small
fixed number of valid past keys to prevent losing the iPRP ses-
sion because of delayed reception of a new key. The oldest key
is discarded upon reception of a new one.

Multicast: iPRP relies on any primitive that establishes a
secure channel with the multicast group. For example, multicast
security (MSEC) [25] can be used for group key management
and for establishing a group security association.

In this setting, both iPRP_CAP and iPRP_ACK messages, as
well as the iPRP headers inserted in the replicated packets, are
authenticated and encrypted with the group key. Thus, there is
no need to include an additional key in the iPRP_CAP.

VII. IPRP DIAGNOSTIC TOOLKIT

As iPRP is designed to be IP friendly, it facilitates the
exploitation of the diagnostic utilities associated with TCP/IP.
The diagnostics include verification of connectivity between

hosts and the evaluation of the corresponding RTTs (simi-
lar to ping), the discovery of routes to a host (similar to
traceroute), etc. Furthermore, the toolkit also adds some
more tools that are specific to iPRP and it gives iPRP a signif-
icant edge in network diagnostics and statistics collection over
PRP. The toolkit comprises the following tools:

iPRPtest <Remote IP Address><Port>
<Number of packets> <Time period>

iPRPping <Remote IP Address>
iPRPtracert <Remote IP Address>
iPRPsenderStats <IP Address>
iPRPreceiverStats <IP Address>.

Imagine a typical scenario where an application on an iPRP-
enabled host that is subscribed to a particular multicast group
(G) experiences packet losses. To troubleshoot this problem, the
user at the receiving host would use the iPRPreceiverStats

tools to consult the local list of active senders, to check for the
presence of an iPRP session associated with any host sending
multicast data to group G. If an iPRP session exists, then the
tool returns the statistics of packets received over different net-
works in the iPRP session. Then, to understand if the problem
is caused by multicast routing or lossy links, the user moves to
the sending host.

First, with iPRPtest and by using the remote IP address of
the receiver, the user establishes a temporary, unicast iPRP ses-
sion with the host. If successful, the iPRPping tool is used
to obtain the packet loss and RTT statistics over the multiple
networks. Also, the iPRPtracert tool is used to verify the
hop-by-hop UDP data delivery over multiple networks. For any
iPRP session between two hosts, the iPRPsenderStats is used
by the sending host to query the remote host about the statistics
of the packets accepted and dropped by the duplicate-discard
functional block on that remote host. The operation of each tool
is described in detail in [21].

VIII. IMPLEMENTATION

We opted for a Linux-based user-space implementation that
has the following properties.

1) Enable the selective filtering of IP packets, so that the
iPRP sequence of operation can be applied.

2) Allow for packet mangling where the iPRP header can be
inserted and packets can be replicated at the sender and
duplicates can be discarded and original packet can be
restored at the receiver.

3) Minimal CPU overhead.
To this end, we use the libnetfilter_queue

(NF_QUEUE) framework from the Linux iptables project.
NF_QUEUE is a userspace library that provides a handle
to packets queued by the kernel packet filter. It requires
the libnfnetlink library and a kernel that includes the
nfnetlink_queue subsystem (kernel 2.6.14 or later). It
supports all Linux kernel versions above 2.6.14. We use the
Linux kernel 3.11 with iptables-1.4.12.

The main challenge encountered in the implementation was
to ensure that the delay and processing overhead was low. For
this purpose, we categorized the various instructions in iPRP
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TABLE I
SPECIFICATIONS OF HOSTS USED IN THE TEST BED

as time critical or nontime critical. For instance, adding the
iPRP header to a packet is time critical, whereas updating the
peer base to enable replication on a new network is nontime
critical. Then, we used batching of nontime-critical instruc-
tions to reduce the total number of system calls. In this way,
we achieved a lower overhead while maintaining the same
real-time performance.

Currently, we are deploying iPRP on our EPFL smart-grid
communication network (smartgrid.epfl.ch).

IX. PERFORMANCE EVALUATION

In order to evaluate the performance of our implementation,
we have setup a lab test-bed and do two types of assessments.
The first one is to evaluate the operation of iPRP and its discard
algorithm in different scenarios. The latter set of experiments is
to assess the processing delay due to iPRP and the additional
CPU usage used by iPRP software of our proof-of-concept
implementation. Our test bed consists of two Lenovo ThinkPad
T400 laptops with a 64-bit Ubuntu OS. The laptops (Table I)
are connected over two Ethernet-based wired networks (one
via USB adapter) and one ad-hoc Wi-Fi network. We label the
interface eth0 as nwA, eth1 as nwB and wlan0 as nwC. To eval-
uate the real-time operation, we patched the Linux kernel 3.11.6
with the associated real-time Linux patch rt29.

A. iPRP Behavior in the Presence of Asymmetric Delays
and Packet Losses

Our goal here is to validate the design and implementation of
iPRP by quantifying the packet losses and delays perceived by
an application. We stress test the discard algorithm with heavy
losses and asymmetric delays and compare the performance
with that in theory. The packet losses and delays are emulated
using the Linux tc-netem [26] tool on the test bed described in
Table I.

In Table II, we summarize the settings used in different
scenarios. To mimic the traffic created by PMUs, we send a
280-byte UDP datagram every 20 ms, long enough to have
stationary behavior. We emulate delays that are uniformly dis-
tributed within 10 ms± 5 ms (small differences in network
topologies and/or loads), and within 1 s± 0.2 s (significant
differences in network topologies or serious perturbations in
network functioning). We emulate both independent and bursty
losses. In both cases, the overall packets’ loss rate is 5%. To
produce 5% bursty losses with tc-netem, we use Gilbert–
Elliot model [27] with p = 0.01, r = 0.19, 1− k = 0.01, and
1− h = 0.81, where p and r are the transition probabilities
between the bad and the good states, 1− k is the loss proba-
bility in the good state, and 1− h is the loss probability in the
bad state.

TABLE II
SCENARIOS USED FOR PERFORMANCE EVALUATION

aScenarios used for performance evaluation.
tc− netem added delay: “Z” means 0, “S” means
small uniform 10 ms± 5 ms, and “L” means large
uniform 1 s± 0.2 s. Loss nature: “IL” means 5%
independent and “BL” means 5% bursty losses.

TABLE III
LOSS PERCENTAGES IN VARIOUS SCENARIOS

We use Scenario 0 to evaluate the operation of iPRP in the
presence of more than two networks. In Scenarios 1–4, we
test the discard algorithm by making asymmetric delays and
losses, thus forcing it to keep track of delayed/missing pack-
ets. With Scenario 5, we test the expected iPRP side benefit
of having lower average one-way network delay, given that
the iPRP duplicate-discard functional block always forward
the first packet delivered over any of the available networks.
We measure delays and losses over individual networks and as
experienced by an application located on top of iPRP.

In Table III, we show the measurement results. We assume
that the losses on different networks are independent. Under
this assumption, the expected actual loss percentage can be
approximated with the product of observed loss percentages
on different networks. We compare the observed actual losses
(iPRP column) with the expected actual loss percentage (theory
column). A deviation would mean anomalies in the iPRP proto-
col and implementation. The accordance between the last two
columns in Table III shows that iPRP performs as expected in
significantly reducing the actual packet losses.

In Fig. 5, we show the CDF of one-way network delay for
a specific packet (diPRP) for Scenario 5. In theory, it should be
diPRP = min(dnwA, dnwB), where dnwA, dnwB are the one-way
network delays of the same packet on network subclouds A and
B. What we measured matches the theory very well. This is a
confirmation of the anticipated side benefit of iPRP: the delays
perceived by the application are improved when iPRP is used,
compared to those when only one of the individual networks is
used.

CDFs are not shown for Scenarios 1–4 as, by construc-
tion, it is almost deterministic which network has the shortest
delay. For example, in Scenario 1 most of the times diPRP =
min(dnwA, dnwB) = dnwA.
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Fig. 5. iPRP side benefit: The delays perceived by the application are
improved when iPRP is used, compared to those when only one of the
individual networks is used.

TABLE IV
CPU USAGE WITH IPRP AND VARYING LOADS

B. Processing Overhead Caused by iPRP

In this section, we evaluate processing delays and the addi-
tional CPU load when iPRP is used on the test bed described
in Table I. We conduct several runs of Scenario 1 (see Table II)
and use GNU gprof [28] to assess the average processing delay
incurred by an iPRP data packet at the iPRP sender daemon
(ISD) and the iPRP receiver daemon (IRD). In an ISD, a data
packet encoutners only the replicator function that adds the
iPRP header and replicates packets over multiple interfaces.
This operation takes 0.8 µs on average. In an IRD, a data
packet encounters three functions. The packet handler copies
a packet into user space, verifies the fields of the iPRP header,
and prepares a packet for the duplicate-discard function, which
indicates if a packet is to be dropped or forwarded. These oper-
ations take 0.8 and 0.4 µs on average, respectively. Finally, if
a packet is to be forwarded, the iPRP header is removed and
checksum is recomputed in 2.4 µs. On average, a data packet
incurs a delay overhead of 4.4 µs due to iPRP.

In order to assess the additional CPU load when iPRP is used,
we perform two experiments in which we record the CPU usage
by iPRP daemons on the sender and on the receiver. The results
are summarized in Table IV. In Experiment 1, we keep constant
aggregate packet rate of 1000 pps for all established iPRP ses-
sions (1 iPRP session of 1000 pps, 2 iPRP sessions of 500 pps
each, etc.). The CPU usage with iPRP is quasi-constant at 15%
for the sender and 12% for the receiver. In Experiment 2, we
keep a constant packet rate of 10 pps for every individual iPRP
session (1 iPRP session—10 pps in total, 2 iPRP sessions—20
pps in total, etc.). At the sender, the CPU usage increases, at
first, at a rate of 0.9% per iPRP session and the increase rate per
iPRP session decreases to 0.32% for a larger number of iPRP
sessions. At the receiver, the increase rate of CPU usage per
each additional iPRP session goes from 0.8% to 0.22%.

Following the results from Table IV, the additional % of
CPU usage at sender (Us) and receiver (Ur) due to iPRP can
be approximated with the relations

Us = 3.7 + 0.28× (# of iPRP sessions) + 0.01× (packets/s)
(1)

Ur = 0.9 + 0.08× (# of iPRP sessions) + 0.01× (packets/s).
(2)

X. CONCLUSION AND FUTURE WORK

We have designed iPRP, a transport layer solution for
improving the reliability of UDP flows with hard-delay con-
straints, such as smart-grid communication, industrial pro-
cesses, high-frequency trading, and online gaming. iPRP is
application and network transparent, which makes it plug-and-
play with the existing applications and network infrastructure.
Furthermore, our soft-state design makes it resilient to software
crashes. Besides unicast, iPRP supports IP multicast, mak-
ing it a suitable solution for low-latency industrial automation
applications requiring reliable data delivery. We have equipped
iPRP with diverse monitoring and debugging tools, which is
quasi-impossible with the existing MAC layer solutions. With
our implementation, we have shown that iPRP can support
several sessions between hosts without any significant delay
or processing overhead. To achieve a low delay and process-
ing overhead, we use batching of nontime-critical instructions,
thereby reducing the total number of system calls.

Interworking with legacy systems could be handled by devel-
oping adequate proxies. Legacy hosts that cannot be upgraded
with iPRP software could be placed behind an iPRP proxy
that would handle all iPRP functions and could thus commu-
nicate with an iPRP-enabled host. This would add redundancy
to the path between the iPRP proxy and the other end of
communication. Nevertheless, the iPRP proxy would now be
a single-point-of-failure. A very interesting case arises if the
legacy host is equipped with PRP. In such cases, the solution
with an iPRP proxy still applies but could be improved using the
concept of split proxies in order to remove the single-point-of-
failure. Split proxies would each be singly attached to the PRP
LAN and to the IP network. They would insert the iPRP header
to each duplicate packet received from the PRP LANs. The
challenge, left for future work, is to design a distributed algo-
rithm between the split proxies in order to ensure consistency
of iPRP sequence numbers.

Our implementation is publicly available and is currently
being installed in our campus smartgrid [6]. In the future, we
intend to do extensive measurements on our smartgrid and
study the performance of iPRP in real networks.

To further reduce the delay overhead due to iPRP, one
might think of a more efficient kernel-space implementation.
However, given the low delay overhead of our user-space
implementation and the problems of stability associated with
a kernel-space implementation, this is not advisable. Hence, we
would like to push the implementation of iPRP functionalities
to the network adapter itself, similarly to the TCP segmentation
offload technique [29]. Also, given the slow adoption of IPv6,
porting the implementation to IPv4 can be of interest.



POPOVIC et al.: iPRP—THE PRP FOR IP NETWORKS 1853

APPENDIX

PROOF OF THEOREM 1

To prove the statement of Theorem 1, we need the following
lemmas.

Lemma 1: If R×Δ < 231 and R× (Tinactivity +Δ) <
231, then the wrap-around problem does not exist.

Proof: Proof: The wrap-around problem can arise in two
cases.

Case 1: A late packet arrives with CurrSN < HighSN− 231.
As R×Δ < 231, the time required by the source to
emit 231 packets is longer than Δ. Hence, HighSN
cannot precede CurrSN for more than 231 and this
scenario is not possible.

Case 2: A fresh packet is received with CurrSN > HighSN+
231. This means that from the point of view of the
receiver, there were more than 231 iPRP packets lost
in succession. As R× (Tinactivity +Δ) < 231, the
time for more than 231 consecutive packets to be
sent is greater than (Tinactivity +Δ). Hence, the time
between reception of any two packets differing by SNs
more than 231 is greater than (Tinactivity). Therefore,
during this time, the iPRP session would be termi-
nated and a new session will be initiated when the
fresh packet is received. Hence, this scenario is also
not possible.

Therefore, in the rest of the proof, we can ignore the wrap-
around problem and do as if SNs of received packets were
integers of infinite precision. Also, a notation such as HighSNt−
(HighSNt+ , respectively) denotes the value of HighSN just
before (after, respectively) time t.

Lemma 2 (Monotonicity of HighSN): If at time t, a
packet with SN = α is received, then HighSNt+ =
max(HighSNt− , α). Therefore, HighSN increases
monotonically with time.

Proof: From Algorithm 6, when α > HighSNt− (line
4) then the value of HighSN is changed to α (line 7). Otherwise,
when HighSNt− ≥ α (lines 2 and 9), HighSN is unchanged, i.e.,
HighSNt+ = HighSNt− . The two cases combined together give
HighSNt+ = max(HighSNt− , α). �

Lemma 3 (Fresh packet is never put in ListSN): If at time
t, a packet with SN = α is forwarded to the application then
α /∈ ListSNt′+∀t′ ≥ t.

Proof: Let us prove by contradiction. Assume that ∃t′ >
t such that α ∈ ListSNt′ . Hence, ∃t1 ∈ (t, t′] when α was
added to ListSN. As t1 > t, from Lemma 2, we conclude
that HighSNt1− ≥ HighSNt+ ≥ α. Now, from Algorithm 6, we
know that only SNs > HighSNt1− can be added to ListSN.
Hence, α cannot be added to ListSN at time t1. Therefore, we
have a contradiction. �

Lemma 4: At any time t, HighSNt− is equal to SN of a packet
received at some time t0 < t or no packet has been received yet.

Proof: HighSN is modified only at line 7, where it takes
the value of the SN received. Hence, HighSN cannot have a
value of an SN that has not been seen yet. �

Now, we proceed with the proof of the theorem. First, we
prove statement (1). Assume we receive a duplicate packet with

SN = α at time t. It means that a packet with SN = α was
already seen at time t0 < t. Then, from Lemma 2, it follows
that α ≤ HighSNt− . Then, either α = HighSNt− (line 2) or
α < HighSNt− (line 10).
Case 1: When α = HighSNt− , the packet is discarded accord-

ing to line 3.
Case 2: When α < HighSNt− , line 10 is evaluated as false

due to Lemma 3. Hence, the packet is discarded by
line 14.

Next, we prove statement (2) by contradiction. Assume we
receive a first copy of a valid packet with SN = α at time t but
we do not forward it. This can happen either due to line 3 (case
1) or due to line 14 (case 2).
Case 1: Statement from line 2 was evaluated as true, which

means that α = HighSNt− . As SN = α is seen for the
first time, Lemma 4 is contradicted. Hence, this case is
not possible.

Case 2: Statement from line 10 was evaluated as false, which
means that α < HighSNt− and α /∈ ListSNt− . We
show by contradiction that this is not possible, i.e., we
now assume that α < HighSNt− and α /∈ ListSNt− .
Now, there are three cases when α /∈ ListSNt− can be
true.

1) SN = α was added to and removed from ListSN

before time t because it was seen (line 11) which
is impossible as the packet is fresh.

2) SN = α was added to ListSN and later removed at
time t0 < t because the size of ListSN is limited to
MaxLost entries (line 6). This means that at time
t0 < t a packet with SN = β was forwarded and
β − α > MaxLost (line 6). However, this means
that the packet with SN = α was not valid at time
t0 and therefore is also not valid at time t > t0.

3) SN = α was never added to ListSN. Consider the
set T = {τ ≥ 0 : HighSNτ+ > α}. T is nonempty
because t ∈ T, by hypothesis of our contradiction.
Let t0 = inf T. Then, necessarily HighSNt0− ≤
α < HighSNt0+ (say, = β). β is the SN of a packet
received at time t0. Since α is valid, β − α <
MaxLost. Otherwise, α would be invalid at time
t0, therefore at time t, which is excluded. Then, we
have two subcases possible.

a) HighSNt0− < α. Then, by line 5, α is added to
ListSN, which is a contradiction.

b) HighSNt0− = α. But, by Lemma 4, a packet
with SN = α must have been received before
t0, which is a contradiction because α is a fresh
packet at t ≥ t0.
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